Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 9(1): 293, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563112

RESUMO

Acute kidney injury (AKI) is a common and severe complication of the coronavirus disease 2019 (COVID-19). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly affects the glomerular and tubular epithelial cells to induce AKI; however, its pathophysiology remains unclear. Here, we explored the underlying mechanisms and therapeutic targets of renal involvement in COVID-19. We developed an in vitro human kidney cellular model, including immortalized tubular epithelial and endothelial cell lines, demonstrating that SARS-CoV-2 directly triggers cell death. To identify the molecular targets in the process of SARS-CoV-2-mediated cell injury, we performed transcriptional analysis using RNA sequencing. Tubular epithelial cells were more prone to dying by SARS-CoV-2 than endothelial cells; however, SARS-CoV-2 did not replicate in renal cells, distinct from VeroE6/transmembrane protease serine 2 cells. Transcriptomic analysis revealed increased inflammatory and immune-related gene expression levels in renal cells incubated with SARS-CoV-2. Toll-like receptor (TLR) 3 in renal cells recognized viral RNA and underwent cell death. Furthermore, analysis of upstream regulators identified several key transcriptional regulators. Among them, inhibition of the interleukin-1 receptor (IL-1R) and TLR4 pathways protects tubular epithelial and endothelial cells from injury via regulation of the signal transducer and activator of transcription protein-3/nuclear factor-kB pathway. Our results reveal that SARS-CoV-2 directly injures renal cells via the proinflammatory response without viral replication, and that IL-1R and TLR4 may be used as therapeutic targets for SARS-CoV-2 mediated kidney injury.

2.
FEBS Open Bio ; 13(1): 60-71, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271697

RESUMO

Severe coronavirus disease 2019 (COVID-19) is characterized by acute respiratory distress syndrome and multiple organ dysfunction, in which the host immune response plays a pivotal role. Excessive neutrophil activation and subsequent superfluity of neutrophil extracellular traps (NETs) can lead to tissue damage, and several studies have shown the involvement of neutrophils in severe COVID-19. However, the detailed responses of each neutrophil subset to SARS-CoV-2 infection has not been fully described. To explore this issue, we incubated normal-density granulocytes (NDGs) and low-density granulocytes (LDGs) with different viral titers of SARS-CoV-2. NDGs form NETs with chromatin fibers in response to SARS-CoV-2, whereas LDGs incubated with SARS-CoV-2 display a distinct morphology with condensed nuclei and moderate transcriptional changes. Based on these transcriptional changes, we suggest that AGO2 possibly plays a role in LDG regulation in response to SARS-CoV-2.


Assuntos
COVID-19 , Armadilhas Extracelulares , Humanos , SARS-CoV-2 , Granulócitos , Neutrófilos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...